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Abstract

The existence and uniqueness of quantizations that are equivariant with respect to conformal and
projective Lie algebras of vector fields were recently obtained by Duval, Lecomte and Ovsienko. In
order to do so, they computed spectra of some Casimir operators. We give an explicit formula for those
spectra in the general framework ofIFFT-algebras classified by Kobayashi and Nagano. We also define
tree-like subsets of eigenspaces of those operators in which eigenvalues can be compared to show the
existence of IFFT-equivariant quantizations. We apply our results to prove the existence and unique-
ness of quantizations that are equivariant with respect to the infinitesimal action of the symplectic
(resp. pseudo-orhogonal) group on the symplectic (resp. pseudo-orthogonal) Grassmann manifold.
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1. Introduction

The word “quantization” carries several different meanings, both in physics and mathe-
matics. One approach – see for instance Ref.[12] – is to consider a quantization procedure
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as a linear bijection from the space ofsymbols Pol(T ∗M) – smooth functions on the cotan-
gent bundle of a manifoldM that are polynomial along the fibres – to the spaceD1/2(M) of
linear differential operators acting on half-densities. It is known that these spaces cannot
be canonically identified. In other words, there does not exist a preferred quantization
procedure.

The concept ofequivariant quantization was introduced and developed in Refs.[2,10,11].
These recent works take care of the symmetries of the classical situation to quantize.

If G is a group acting on the manifoldM, aG-equivariant quantization is an isomorphism
of representations ofG between the spaces of symbols and of differential operators. Obvi-
ously, such an identification does not exist for all groupsG acting onM, for instance those
spaces are not equivalent as Diff(M)-modules. At the infinitesimal level, ifG is a Lie group,
its action gives rise to a Lie subalgebrag of vector fields overM and one is led to build
a g-equivariant linear bijection. Lecomte and Ovsienko examined the case of a projective
structure on a manifold of dimensionn, with G = SL(n + 1, R) and then, together with
Duval, the case of the groupG = SO(p + 1, q + 1) on a manifold of dimensionp + q. That
latter group defines conformal transformations with respect to a pseudo-Riemannian metric.

In these works, the authors consider the more general modulesDλ,µ of differential op-
erators transformingλ-densities intoµ-densities. These parameters give rise to theshift
value δ = µ − λ and to the special caseδ = 0, which can be specialized to the origi-
nal problem. They obtain existence and uniqueness (up to normalization) results for a
quantization procedure in both projective and conformal cases, provided the shift value
does not belong to acritical set. Furthermore, they show that this set never contains
zero.

In suitable charts, the subalgebras mentioned up to now are realized by polynomial vector
fields and they share the property of being maximal proper subalgebras of the algebra of
polynomial vector fields.

In Ref. [1], we investigated this maximality property and showed that the finite dimen-
sional, graded and maximal proper subalgebras of the Lie algebra of polynomial vector fields
over a Euclidean vector space correspond to the list of so called “Irreducible Filtered Lie
algebras of Finite Type”(IFFT-algebras), classified by Kobayashi and Nagano in Ref.[7].

Our concern in this paper is to deal with the natural next question :“Is it possible to
build (unique) equivariant quantizations with respect to the IFFT-algebras ?”

The original construction of the conformally equivariant quantization (see Ref.[2])
involves the computation of the spectrum of the Casimir operator ofso(p + 1, q + 1) acting
on the space of symbols. The obstructions to the existence of a quantization show up as
equalities among some eigenvalues of that operator. It was also shown in Ref.[2] how
the relevant eigenvalues that should be compared are associated totree-like subsets of
eigenspaces.

Section3of the present article is devoted to this computation. We obtain, for a wide range
of IFFT-algebras, a formula where the eigenvalues are expressed in terms of the dimension
of the manifold and of the highest weights of some finite dimensional representations of
the semisimple part of the linear isotropy algebra ofg (see Ref.[8]).

In Section4, we propose a general definition for the above-mentioned tree-like subsets. A
few elementary properties of these subspaces allow us to reformulate the existence theorem
for equivariant quantizations in the framework of IFFT-algebras.
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We later apply these results in Section5. The Lie algebras of fundamental vector fields
associated to the action of the symplectic (resp. pseudo-orthogonal) group on the Lagrangian
(resp. pseudo-orthogonal) Grassmann manifold are indeed IFFT. We prove existence and
uniqueness results for equivariant quantizations with respect to both of those algebras. Once
more, these results hold outside of a critical set of values of the shift. We, furthermore, prove
that this set never contains zero.

2. Basic definitions and notations

Here, we recall the definitions of the fundamental objects involved in this work. For
the most part, we will follow the notation of Refs.[2,10] and we refer the reader to these
papers for more detailed information. It will also be sufficient for our computations to fix
our notations over vector spaces.

Throughout this section,V will be a d-dimensional vector space overK = R or C.
WheneverE is a vector bundle overV, the space ofsections of E, which we will writeΓ (E),
is taken to be the space ofC∞ sections ifK = R or the space of holomorphic sections if
K = C.

2.1. Tensor densities and differential operators

Let us denote by�λ(V ) → V the line bundle of tensor densities of weightλ overV and
by Fλ the spaceΓ (�λ(V )). There exists a natural representationL of the Lie algebra of
vector fields Vect(V ) onFλ. In local coordinates, the Lie derivative is given by

LXφ = X · φ + λ tr

(
∂

∂x
X

)
φ, ∀X ∈ Vect(M), ∀φ ∈ Fλ, (1)

where ∂
∂x

X denotes the Jacobian matrix ofX.
Let nowDλ,µ be the space of linear differential operators fromFλ toFµ. The represen-

tationLλ,µ of Vect(M) onDλ,µ is induced byL :

Lλ,µD = L ◦ D − D ◦ L.

In order to keep the notations light, we will simply writeL for Lλ,µ unless that leads to
confusion.

To the moduleDλ,µ is associated theshift valueδ = µ − λ.

2.2. Symbols

Thesymbol space of degree k associated toDλ,µ, which we denote bySk
δ is the space of

contravariant symmetric tensor fields of degreek, with coefficients inδ-densities that is

Sk
δ = Γ (SkTV ⊗ �δ(V )).
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We also consider the whole symbol space

Sδ =
⊕
k≥0

Sk
δ .

As we continue, we will identify symbols with functions onT ∗V that are polynomial along
the fibre and we will denote byξ their generic argument in the fibre ofT ∗V .

The Lie derivative of symbols is also natural. It is an extension of(1). We recall that the
natural action ofgl(d,K) on�δ(Kd) is given by

ρ(A)φ = −δtr(A)φ, ∀A ∈ gl(d,K), ∀φ ∈ �δ(Kd).

Then in local coordinates, the Lie derivative ofP ∈ Sk
δ in the direction of a vector fieldX

writes

LXP = X · P − ρ

(
∂

∂x
X

)
P, (2)

whereρ is the natural action ofgl(d,K) on the typical fibreSk
K

d ⊗ �δ(Kd) of the space
of symbols.

The link between differential operators and symbols is the following : the spaceDλ,µ is
the filtered union

⋃
k∈ND

k
λ,µ of the submodules of differential operators of order at most

k. In local coordinates, anyD ∈ Dk
λ,µ may be written

f ∈ Fλ 	→
∑
|α|≤k

cαdαf ∈ Fµ,

whereα is a multi-index,dα stands for
(

∂
∂x1

)α1 · · ·
(

∂
∂xd

)αd

andcα ∈ Fδ. Theprincipal

symbol of D is then

σ(D) =
∑
|α|=k

cαξα (3)

It is well-known thatσ : Dk
λ,µ → Sk

δ intertwines the actions of Vect(V ) on these spaces:

σ ◦ L = L ◦ σ.

Moreover, its kernel is by definitionDk−1
λ,µ . The module (Sδ, L) is then the graded module

associated to (Dλ,µ,L).

2.3. Equivariant quantizations and symbol maps

Letgbe a subalgebra of Vect(V ). A g-equivariant symbol map is ag-module isomorphism

σg : Dλ,µ → Sδ
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that induces the identity on the associated graded module. Explicitly, this latter requirement
means that

D ∈ Dk
λ,µ =⇒ σg(D) − σ(D) ∈

⊕
l<k

Sl
δ.

The inverse map of such an application is namedg-equivariant quantization.
Let us quote a first example of equivariant symbol map that will be useful as we continue.

SinceV is a vector space, it makes sense to consider constant and linear vector fields. These
vector fields generate theaffine subalgebra Aff of Vect(V ). Now, it is well-known that the
total symbol map, which is also known as thestandard ordering,

σAff : Dλ,µ → Sδ :
∑
|α|≤k

cαdα 	→
∑
|α|≤k

cαξα

is an isomorphism of Aff-representations.

Remark. We can endowSδ with the module structure that turnsσAff into a module isomor-
phism. This is done by considering the representation

σAff ◦ Lλ,µ ◦ (σAff )
−1,

which we still denoteLλ,µ or simplyL. The comparison of spaces of differential operators
and tensor fields as modules over a given subalgebra of vector fields becomes the comparison
of the modules (Sδ, L) and (Sδ,L), provided one keeps in mind that two parameters, namely
λ andµ, are attached to the second one.

2.4. Equivariance algebras

In Refs.[2,10], the authors considered the problem of equivariant quantization with re-
spect to the subalgebras of vector fields generated by infinitesimal projective (or conformal)
transformations, over a manifold endowed with a flat projective (or conformal) structure.
Both algebras are realized over suitable charts as subalgebras of polynomial vector fields.
They are graded by the degree of polynomials and of finite dimension. They are moreover
maximal in the set of proper subalgebras of the algebra of polynomial vector fields. In this
sense, they represent a maximal set of equivariance conditions that one can impose to a
quantization procedure. In Ref.[1], we determined all the graded, finite-dimensional maxi-
mal proper subalgebras of polynomial vector fields over a vector spaceV (real or complex).
We proved that these subalgebras are theIrreducible Filtered Finite-dimensional Transitive
Lie algebras, listed by Kobayashi and Nagano in Ref.[7]. The most important properties
of these algebras are the following:

• They are simple.
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• Their grading contains exactly three terms :

g = g−1 ⊕ g0 ⊕ g1.

• g0 is reductive: one has

g0 = h0 ⊕KE,

whereh0 is the semisimple part ofg0 and where theEuler element,E, spans a one-
dimensional center.

• gp is the eigenspace of eigenvaluep of ad(E).

It is worth noticing that in Ref.[7], the authors listed simple matrix algebras together with
their gradings. But in Ref.[8], they described a standard procedure to view these algebras
as subalgebras of polynomial vector fields over the vector spaceV = g−1. Namely, if we
denote byXh the vector field overg−1 which corresponds toh ∈ g,

Xh
x = −h, ∀h ∈ g−1

Xh
x = −[h, x], ∀h ∈ g0

Xh
x = −1

2[[h, x], x], ∀h ∈ g1
(4)

In Ref.[1], we proved that the subalgebra of vector fields obtained in this way is a maximal
proper subalgebra, provided it meets the additional requirement:

• When the base field isR, the representationg−1 of g0 has no complex structure.

In the present paper, we will compare the modules (Sδ, L) and (Sδ,L) over the base space
V = g−1.

3. Casimir operators

In Ref. [2], the computation of the Casimir operator of the space of symbols was based
on the knowledge of explicit formulas for the action of generators of the conformal algebra.
From now on, we will consider an IFFT-algebrag realized as a maximal proper subalgebra
of vector fields overg−1. We will derive a general formula for the spectrum of the Casimir
operator of the space of symbols, based on the analysis of finite-dimensional representations
of h0. We will denote byB the Killing form of g, setd = dim(g−1) and denote byB0 the
Killing form of h0.

3.1. Choice of a basis

Let us first describe suitable bases ofg in order to simplify the computation of the Casimir
operators.
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Proposition 1. Let (ei)(i = 1, . . . , d) denote a basis of g−1 and (hj)(j = 1, . . . , dim(h0))
a basis of h0. There exist unique bases (εi) and (h∗

j ) of g1 and h0, respectively, such that the

bases (ei, E, hj, ε
i) and (εi, 1

2d
E, h∗

j , ei) of g are dual to each other with respect to B.
Moreover, one has∑

i

[ei, ε
i] = −1

2
E. (5)

Proof. The existence and uniqueness of the basis (εi) in g1 such thatB(ei, ε
j) = δi,j follows

from the relations (proved in Ref.[7])

B(g−1 ⊕ g1, g0) = B(g−1, g−1) = B(g1, g1) = 0.

But h0 andKE are orthogonal to each other too. It is sufficient to note thath0 is equal to its
derived ideal and that

B(E, [x0, y0]) = B([E, x0], y0) = 0, ∀x0, y0 ∈ h0.

This ensures the existence and uniqueness of the basis (h∗
j ) in h0.

Finally, for everyx0 ∈ g0, we have

B(x0, E) = tr(ad(x0)|g1) − tr(ad(x0)|g−1
) =

∑
i

B(ei, [x0, ε
i])

−
∑

i

B(εi, [x0, ei]) = −2B(x0,
∑

i

[ei, ε
i])

The second relation shows thatB(E, E) = 2d, while the third one proves(5). �

3.2. The cocycle γ

Since the Lie derivativesLλ,µ
X andLX coincide for everyX in the affine algebra, the

obstuctions to build ag-equivariant quantization come fromg1. They are best seen in the
difference of the Casimir operators on differential operators and symbols. As we continue,
we will denoteCδ the Casimir operator of (Sδ, L) and byCλ,µ the Casimir operator of
(Sδ,L

λ,µ). The following maps will also play an important role:

γ : g→ gl(Sδ) : X 	→ LX − LX,

and

NC : Sδ → Sδ : P 	→ 2
∑

i

γ(εi) ◦ LeiP.

Let us analyse their most important properties.
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Proposition 2. The map γ has the following properties:

• It is a Chevalley–Eilenberg cocycle with values in the representation (gl(Sδ), L′) of g,
where

L′
X : gl(Sδ) → gl(Sδ) : T 	→ LX ◦ T − T ◦ LX.

• Its restriction to g−1 ⊕ g0 vanishes.
• For every X in g1 and every k ∈ N, γ(X) : Sk

δ → Sk−1
δ is a differential operator of order

zero with constant coefficients.

Proof. The first statement is a direct consequence of the Jacobi identity forLλµ. For the
second one, we recall thatLλ,µ

X andLX coincide for everyX in the affine algebra, while the
third one is the result of a straightforward computation.�

The next proposition shows the link between the Casimir operators.

Proposition 3. The Casimir operators Cλ,µ and Cδ are related by the formula

Cλ,µ = Cδ + NC.

Proof. Using the notations ofProposition 1, the Casimir operatorCλ,µ can be rewritten as
follows:

Cλ,µ =
∑

i

(Lei ◦ Lεi + Lεi ◦ Lei ) + 1

2d
(LE)

2 +
∑

j

Lhj ◦ Lh∗
j

= 2
∑

i

Lεi ◦ Lei + L∑
i
[ei,εi] + 1

2d
(LE)

2 +
∑

j

Lhj ◦ Lh∗
j
.

The conclusion is then a direct consequence of the vanishing ofγ ong−1 ⊕ g0. �

Let us end this section by stating some properties ofNC.

Proposition 4. For every k ∈ N, the map NC : Sk
δ → Sk−1

δ is a differential operator of
order one with constant coefficients. Moreover, for every X ∈ g−1 ⊕ g0, we have

LX ◦ NC = NC ◦ LX.

Proof. The first statement is a corollary ofProposition 2while the second one is a conse-
quence ofProposition 3. �
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3.3. Spectrum of Cδ

We will now compute the spectrum of the Casimir operator on the space of symbols. We
first recall that the Lie derivative of a symbolP in the direction of a vector fieldX writes

LXP = X · P − ρ

(
∂

∂x
X

)
P (6)

whereρ is the natural representation ofgl(g−1) on the fibre of the space of symbols and
∂
∂x

X is the Jacobian matrix ofX.
Note that, in view of formula(4), the map

− ∂

∂x
: g0 → gl(g−1) : X 	→ − ∂

∂x
X

is just the (matrix realization of the) adjoint action ofg0 on g−1. As we continue, we
will denote byρk the natural extension of the adjoint representation ofg0 on the fibre
Skg−1 ⊗ �δ(g−1) of Sk

δ .
It is also noteworthy that we havead(h0) ⊂ sl(g−1), sinceh0 is semisimple. Therefore,

as a representation ofh0, S
kg−1 ⊗ �δ(g−1) is isomorphic toSkg−1. Now, we can come to

the first result.

Proposition 5. For every P ∈ Sk
δ , one has

CδP = 1

2d
(dδ − k)(d(δ − 1) − k)P +

dim(h0)∑
j=1

ρk(hj)ρ
k(h∗

j )P. (7)

Proof. As in Proposition 3, we write

Cδ =
∑

i

Lεi ◦ Lei − 1

2
LE + 1

2d
(LE)

2 +
∑

j

Lhj ◦ Lh∗
j
.

The operatorCδ commutes with the action ofg−1. It is, therefore, a differential operator with
constant coefficients. Hence, we only need to sum the constant terms in the right-hand side
of the last formula. In view of formula(6), it is clear that the Lie derivatives with respect to
a quadratic vector field do not contribute to such terms. Furthermore we have

LEP =
∑

i

xi ∂

∂xi
P + (dδ − k)P (8)

and

LhjP =
∑

i

(hj)
i ∂

∂xi
P + ρk(hj)P.

Hence the result. �
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In order to state the main theorem, we introduce a few more notations. From now on to
the end of this section, for each vector space (resp. Lie algebra)E, we will denote byEC

the complexified vector space (resp. Lie algebra)E ⊗R C. We will set

Ẽ =
{

E, if the base fieldK isC,

EC, if K = R.

Furthermore, we fix a Cartan subalgebraC in h̃0, a root system, a simple root system
S . Finally, let us denote byρS half the sum of the positive roots and by (·, ·) the scalar
product induced by the extension ofB0 to h̃0 on the real vector space spanned by the
roots.

If E is an irreducible module overh0, then eitherẼ is irreducible as a complex repre-
sentation ofh̃0 and we denote byµE its highest weight orE admits a complex structure
as a module overh0. In this latter case, we setµE to be the highest weight ofE as a
complex representation of̃h0. Recall that the latter case never occurs whenE is taken
to beg−1.

Finally, as a representation ofh0, S
kg−1 ⊗ �δ(g−1) is decomposed as a sum of irre-

ducible representations, say

Skg−1 ⊗ �δ(g−1) = ⊕nk

p=1Ik,p,

and for each irreducible representationIk,p we denote byEk,p the corresponding space of
sections:

Ek,p = Γ (Ik,p).

We are now in position to present the main result.

Theorem 6. Let g be an IFFT-algebra such that h̃0 is simple. Then the Casimir operator
Cδ is diagonalizable.

Indeed, for every k ∈ N, the restriction of Cδ to Ek,p is equal to

1

2d
(dδ − k)(d(δ − 1) − k) + dim(h0)

2(µg−1
, µg−1

+ 2ρS)d + dim(h0)
(µIk,p

, µIk,p
+ 2ρS)

(9)

times the identity of Ek,p.

Proof. Let us assume first thatK = C and consider an irreducible submoduleIk,p. Using
Proposition 5, we only have to compute the operator

dim(h0)∑
j=1

ρk(hj)ρ
k(h∗

j )
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on Ik,p. Under the assumption thath0 be simple, there existsl ∈ C \ {0} such that

B|h0 = lB0. (10)

Then, we consider the bases (fj) and (f ∗
j ) of h0 defined byfj = hj andf ∗

j = lh∗
j . These

bases are dual with respect toB0 and so we have

dim(h0)∑
j=1

ρk(hj)ρ
k(h∗

j ) = 1

l
Ch0,Ik,p

,

whereCh0,Ik,p
is the Casimir operator of the representationIk,p of h0. Moreover, it is well-

known that

Ch0,Ik,p
= (µIk,p

, µIk,p
+ 2ρS) (11)

times the identity (see, for instance Ref.[6], p. 122).
In order to computel, we recall thatg−1 andg1 are dual representations ofh0. Then, for

all x, y ∈ h0, we have

B|h0(x, y) = 2tr(ad(x)|g−1
ad(y)|g−1

) + tr(ad(x)|h0ad(y)|h0) = 2Bρ1(x, y) + B0(x, y),

whereBρ1 is the bilinear form associated to the representationg−1 of h0.
The latter formula also writes

Bρ1 = l − 1

2
B0.

Note thatl �= 1 becauseBρ1 is non-singular sinceρ1 is not zero (see Ref.[5], p. 143). Then
we look at the Casimir operatorCh0,g−1

of the representationg−1. We have, as above

Ch0,g−1
= (µg−1

, µg−1
+ 2ρS)

times the identity ofg−1. But the bases (fj) and
(

2
l−1f ∗

j

)
are dual with respect toBρ1 and

then

tr(Ch0,g−1
) = d(µg−1

, µg−1
+ 2ρS) = tr

∑
j

ρ1(fj)ρ
1(f ∗

j )


= l − 1

2

∑
j

Bρ1

(
fj,

2

l − 1
f ∗

j

)
= l − 1

2
dim(h0).

Hence, the result over the field of complex numbers.
Let us now handle the caseK = R. We first remark that formula(10) still holds —

with l ∈ R, this time — sinceh0 has no complex structure. Now, let us adapt formula(11).
If ICk,p is a simple representation ofhC0 , its Casimir operator is theC-linear extension of

the Casimir operator ofIk,p, since the Killing form ofhC0 is just the extension ofB0. The
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Casimir operator ofICk,p is then the real multiple of the identity given by formula(11).

If ICk,p is reducible, thenIk,p admits a complex structure and becomes a simple complex

representation ofhC0 . We then conclude using the same arguments.�

The eigenvalue formula(9) is easily shown to coincide, wheng is taken to besl(n + 1,R),
with the formula given in Ref.[11], Prop. 2.

4. Building equivariant quantizations

Throughout this section, we assume thath̃0 is simple, in order to applyTheorem 6. We
will denote byαk,p the eigenvalue ofCδ onEk,p.

4.1. The tree-like subspace associated to γ

We identify tensors inSkg−1 ⊗ �δ(g−1) with symbols with constant coefficients. Since
for everyX ∈ g1, γ(X) has constant coefficients, we can consider thatγ(X) is defined on
Skg−1 ⊗ �δ(g−1).

Lemma 7. Let k ∈ N and F be a submodule of Skg−1 ⊗ �δ(g−1) over h0. Then, γ(g1)(F )
is a submodule of Sk−1g−1 ⊗ �δ(g−1) over h0.

Proof. It is easy to see that the cocycle relation forγ implies

LY ◦ γ(X)P = γ(X) ◦ LYP + γ([Y, X])P ∈ γ(g1)F

for everyY ∈ g0, X ∈ g1 andP ∈ F . We conclude by noticing that on the subspace of
symbols with constant coefficients,L reduces toρk. �

We define thetree-like subspace associated to γ, starting at an irreducible submodule
Ik,p:

Tγ (Ik,p) =
⊕
l∈N
T l

γ (Ik,p),

whereT 0
γ (Ik,p) = Ik,p andT l+1

γ (Ik,p) = γ(g1)(T l
γ (Ik,p)) for all l ∈ N. The spacesT l

γ (Ek,p)
are defined in the same way.

Recall that the module structure defined byL is related to two parameters,λ andµ,
and that their differenceδ is calledshift. As one would expect, the possibility of building
equivariant quantization depends on the values ofλ andµ. We will say that a couple of
parameters (λ, µ) is critical if there existk, p such that the eigenvalueαk,p belongs to the
spectrum of the restriction ofCδ to

⊕
l≥1 T

l
γ (Ek,p). In the same way, we will say that a shift

valueδ is critical if there exists a value ofλ such that (λ, µ) is critical in the previous sense.
The following straightforward lemmas show the link between the existence of ag-

equivariant quantization and the last definition.
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Lemma 8. Let Ik,p be an irreducible submodule of Skg−1 ⊗ �δ(g−1) and g∗−1 ⊗ Ik,p

denotes the subspace of Ek,p made up of sections with linear coefficients. Then

NC(g
∗
−1 ⊗ Ik,p) = γ(g1)(Ik,p).

Proof. In the basis (ei) of g−1 chosen inProposition 1, Lei takes the local form∂
∂xi . It then

follows that

NC

∑
l,m

al
mxmul

 = 2
∑
l,m

al
mγ(εm)ul,

for all al
m ∈ K andul ∈ Ik,p. �

In a similar fashion, we have

Lemma 9. For all u ∈ Ek,p, NC(u) ∈ γ(g1)(Ek,p).

Theorem 10. If (λ, µ) is not critical, then there exists a g-equivariant quantization.

Proof. The proof machinery goes as in Ref.[2]. We give it for the sake of completeness.
Let P ∈ Ek,p. We first prove that there exists a uniqueP̂ ∈ Tγ (Ek,p) such thatP is the

principal symbol ofP̂ and thatP̂ is an eigenvector ofCλµ associated to the eigenvalueαk,p.
For all R ∈ Sδ, write Rl the projection ofR ontoSl

δ. With these notations, the equation
CλµP̂ = αk,pP̂ can be rewritten :{

CδP = αk,pP

(Cδ − αk,pid)P̂l = NCP̂l+1
(12)

where the last equation must be satisfied for alll < k. The existence and the properties of the
correspondenceP 	→ P̂ follow from the observation that the latter system is triangular and
admits a unique solution. Indeed, the right hand side of the equations involvingNC always
belongs to

⊕
l≥1 T

l
γ (Ek,p) and the restriction ofCδ − αk,pid to this space is non-singular.

Now, letQ denote the linear extension of this correspondence. It remains to prove that
it is equivariant with respect tog. It suffices to check that

LX ◦Q(P) = Q ◦ LX(P),

for all X ∈ g, all k ∈ N and all eigenvectorsP ∈ Sk
δ of Cδ associated to any eigenvalueαk,p.

But both sides of this condition are eigenvectors ofCλµ associated to the same eigenvalue
αk,p. Moreover, they have the same principal symbol,LX(P). SinceEk,p andTγ (Ek,p) are,
respectively, closed underLX andLX, both sides belong to the latter tree. The first part of
the proof ensures that they coincide.�
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5. Examples

We will now apply the method described in the previous section to two particular algebras.
The treatment will be done in a concurrent way. Throughout this section,g denotes one of
the algebrasO(n) andS(n) defined below.

We will significantly refineTheorem 10by proving that 0 is never a critical shift value
and obtaining the uniqueness of the quantization.

5.1. Orthogonal and symplectic algebras

From now on, we assume thatn is an integer greater than 2. It is well-known that the
Lie subalgebrasso(n, n,K) andsp(2n,K) of the general linear algebragl(2n,K) can be
realized as three-graded algebras. These are described in Ref.[7](pp. 893-894).

For the constructions below to be self-contained, we only need to recall thatso(n, n,K)
is written

O(n) = O(n)
−1 ⊕O(n)

0 ⊕O(n)
1 ,

whereO(n)
−1 = ∧2

K
n,O(n)

1 = ∧2
K

n∗ andO(n)
0 = gl(n,K). For allA ∈ O(n)

0 andh ∈ O(n)
−1 ⊕

O
(n)
1 ,

[A, h] = ρ(A)h,

whereρ is the natural representation ofO(n)
0 onO(n)

−1 ⊕O(n)
1 . The Euler element is−1

2id ∈
gl(n,K). We will refer toO(n) as theorthogonal algebra.

Similarly, sp(2n,K) is written

S(n) = S(n)
−1 ⊕S(n)

0 ⊕S(n)
1 ,

whereS(n)
−1 = S2

K
n, S(n)

1 = S2
K

n∗ andS(n)
0 = gl(n,K). The same statements about the

bracket and Euler element hold. We will refer to this algebra as thesymplectic algebra.

5.2. Casimir operator eigenvalues

In the examples under consideration, the subalgebrah0 is isomorphic tosl(n,K) and
h̃0 = sl(n,C) is obviously simple. The data introduced to stateTheorem 6are classical.
Let us denote byd(n,K) the matrix subalgebra of diagonal matrices ofgl(n,K) andDj ∈
d(n,K)(j = 1, . . . , n − 1) as the diagonal matrix

diag(0, . . . , 0,
(j)
1 , 0, . . . , 0, −1).

These diagonal matrices generate the Cartan subalgebrasl(n,K) ∩ d(n,K) of sl(n,K). In
its dual space, we defineδj by δj(Di) = δij for all i, j ∈ {1, . . . , n − 1}. As it is common,
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Fig. 1. Ferrers diagrams of irreducible submodules ofSkO
(n)
−1 andSkS

(n)
−1(n ≥ 4).

we setδn = − ∑n−1
i=1 δi as well. Then, a simple root system ofsl(n,K) is given by the

δi − δi+1, (i = 1, . . . , n − 1) andρS = ∑
i(n − i)δi. The Killing form B0 of sl(n,K) is

given byB0(A, B) = 2n tr(AB) for all A, B ∈ sl(n,K). The induced scalar product satisfies

(δi, δj) = 1

2n2 (nδij − 1) and (δi, 2ρS) = n − 2i + 1

2n
, (13)

for all i = 1, . . . , n.
Now, letK = C. The decomposition ofSkg−1 into irreducible submodules overh0 is

given in Ref.[4]. These submodules may be generated by the action of real matrices on their
(real) highest weight vector. Therefore, these results can be used whenK = R as well. As
it is well-known, irreducible submodules can be conveniently indexed by Ferrers diagrams,
which in turn can be denoted by elements ofNn. We will respectively denote by (5, 5, 2, 2)
and (6, 4, 2, 2) the Ferrers diagrams given inFig. 1. They admit 5(δ1 + δ2) + 2(δ3 + δ4)
(resp. 6δ1 + 4δ2 + 2(δ3 + δ4)) as highest weight.

Theorem 5.2.11 in Ref.[4] states thatSkO
(n)
−1 ⊗ �δ(O(n)

−1) ∼= SkO
(n)
−1 splits as a sum of

one copy of each irreducible submodule of weight
∑n

i=1 µiδi such that

(1) µ1 ≥ · · · ≥ µn ≥ 0, µ is dominant non-negative
(2)

∑
i µi = 2k,

(3) µ2i−1 = µ2i, ∀i ∈ {1, . . . , �n/2�},
(4) µn = 0, if n is odd.

Theorem 5.2.9 ibidem states thatSkS
(n)
−1 ⊗ �δ(S(n)

−1) ∼= SkS
(n)
−1 splits as a sum of one copy

of each irreducible submodule of weight
∑n

i=1 µiδi such that

(1) µ1 ≥ · · · ≥ µn ≥ 0, µ is dominant non-negative
(2)

∑
i µi = 2k,

(3) µi ∈ 2N, ∀i ∈ {1, . . . , n − 1}.

Let us compute explicitly the value of Expression(9). For all submodulesR of O(n)

orS(n) with highest weightµR described by a Ferrers diagram (k1, . . . , kn), formula(13)
shows that

(µR, µR + 2ρS) = 1

2n2

n∑
i,j=1

(kikj(nδij − 1) + 2ki(n − j)(nδij − 1)). (14)
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In the orthogonal case,d = n(n−1)
2 and the highest weight ofg−1 = O(n)

−1 is δ1 + δ2.

Let R now denote an irreducible submodule ofSkO
(n)
−1 associated to a Ferrers diagram

�k = (k1, . . . , kn). A direct computation using(9) and (14)shows that the eigenvalue ofCδ

associated toR ⊗ �δ(O(n)
−1) equals

αo(�k) = n(n − 1)

4
δ2 − (k + n(n − 1)

4
)δ + n

n − 1
k +

∑n
i=1 ki(ki − 2i)

4(n − 1)
. (15)

In thesymplectic case,d = n(n+1)
2 and the highest weight ofg−1 = S(n)

−1 is 2δ1. LetR now

denote an irreducible submodule ofSkS
(n)
−1 associated to a Ferrers diagram (k1, . . . , kn).

Then the eigenvalue ofCδ associated toR ⊗ �δ(O(n)
−1) equals

αs(�k) = n(n + 1)

4
δ2 − (k + n(n + 1)

4
)δ + k +

∑n
i=1 ki(ki − 2i)

4(n + 1)
. (16)

5.3. Another tree

In both symplectic and orthogonal cases, it is easy to check that the difference of two
eigenvalues corresponding to different degreesk cannot be identically zero. Indeed, such a
difference is a linear expression inδ with rational coefficients. Thus there exist infinitely
many values of the shift for which a quantization exists.

We will now develop two important refinements. First, we will determine a setCV that
contains the critical shift values and we will show that this set does not contain zero in both
symplectic and orthogonal cases. Then, given any value of the shift outsideCV , we will
prove that the only equivariant quantization is the one we have built.

In order to prove that 0 is not critical, it is unfortunately not sufficient to check all the
eigenvalues by a straight inspection. For instance, the eigenvalues associated to diagrams
(6, 2, 2, 2) and (6, 4) are equal whenn = 5 in the symplectic case. But it is clear from
Equation(12) that only some of those equalities can actually prevent the quantization from
existing.

Let I ⊂ Skg−1 ⊗ �δ(g−1) be an irreducible submodule overh0. We define a bigger
tree thanTγ (I) as follows. LetT̃ 1(I) be the sum of all irreducible submodulesJp in
Sk−1g−1 ⊗ �δ(g−1) that are isomorphic to an irreducible submodule ofg∗−1 ⊗ I. Define
T̃ 2(I) = ⊕

(p) T̃
1(Jp) and continue recursively. We write

T̃ (I) = I ⊕
⊕
k≥1

T̃
k
(I).

Consider now the natural representation ofh0 on g∗−1 ⊗ I. It is isomorphic to the rep-
resentation defined by the Lie derivative in the direction of (linear) vector fields ofh0 on
the space of sections valued inI with linear coefficients.Lemma 8andProposition 4then
show that for allλ, Tγ (I) is indeed a subset ofT̃(I).
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It is customary to order the Ferrers diagrams as follows:

�k ≤ �l ≡ (ki ≤ li, ∀i ≤ n)

and of course

�k < �l ≡ (k ≤ l andk �= l).

Then, we can describẽT (I) in the examples under consideration.

Lemma 11. Let K ⊂ Skg−1 ⊗ �δ(g−1) be an irreducible submodule over h0 whose type
is given by the Ferrers diagram �k. If an irreducible submodule L ⊂ Slg−1 ⊗ �δ(g−1) with
type �l, (l < k) is in T̃(K) then �l < �k.

Proof. It suffices to determine the diagrams occurring in the decomposition ofg∗−1 ⊗ K

into irreducible components using Littlewood–Richardson rule (see for instance[3], pp.
455-456).

Let us detail the proof in the orthogonal case, for whichg∗−1 is represented by a column
of heightn − 2 and width 1. The irreducible components ofK ⊗ g∗−1 are then associated
to diagrams made up by adding one box ton − 2 rows of the diagram associated toK.

Then, one needs to know which of these new diagrams represent irreducible components
isomorphic to one occurring in the decomposition ofSk−1g−1. But the latter admit diagrams
with 2(k − 1) boxes while the former have 2k + n − 2. In order to describe isomorphic
sl(n,K) submodules, they should differ by a column of heightn and width 1 on the left. The
diagram with 2k − n + 2 boxes may thus only be isomorphic to a diagram smaller than the
original diagram ofK. The conclusion follows by induction.�

Theorem 12. All critical shift values belong to the set

CV =
{

n

n + 1
+

∑n
i=1(ki − li)(ki − li + 2i)

4(n − 1)(k − l)
: �k > �l

}

in the orthogonal case and

CV =
{

1 +
∑n

i=1(ki − li)(ki − li + 2i)

4(n + 1)(k − l)
: �k > �l

}

in the symplectic case, where �k and �l describe all the admissible Ferrers diagrams. In par-
ticular, they are greater than 0 and there exists a g-equivariant quantization into operators
that preserve the weight of their arguments.
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Proof. Assume that two eigenvalues associated toK andL taken as above are equal. For
instance, in the orthogonal case, we have, using Equation(15)

αo(�k) − αo(�l) = 0 ⇔ δ = n

n − 1
+

∑n
i=1(ki − li)(ki + li − 2i)

4(n − 1)(k − l)
,

hence the description of the setCV . The right-hand side of the last equation is not less than

n

n − 1
+

∑
i(k

2
i − l2i )

4(n − 1)(k − l)
− 2n

∑
i(ki − li)

4(n − 1)(k − l)
,

which is greater than 0. Indeed, the last term sums up to the first and there exists an indexi
such thatki > li.

The proof goes the same way in the symplectic case. Hence, the result.�

Let us now turn to the uniqueness problem. Here, we restrict ourselves to the real case
in order to apply the results of Ref.[9].

Lemma 13. Assume that δ is not in the set CV of Theorem 12and let k, l ∈ N such that
l < k. Then there exists no (non-trivial) g-equivariant map from (Sk

δ, L) to (Sl
δ, L).

Proof. Assume thatT is such a map. As proved in[9](Lemma 7.1) the equivariance ofT
with respect tog−1 (i.e. every constant vector field) andE implies that it is a differential
operator with constant coefficients. We can thus write

T =
R∑

r=0

Tr,

with Tr an homogeneous differential operator of orderr.
In view of (8), [LE, T ] = 0 leads furthermore to

R∑
r=0

(k − l − r)Tr = 0

and, therefore,T = Tk−l.
Let Ik,p be an irreducible submodule ofSkg−1 ⊗ �δ(g−1) overh0, described by�ı. We

know thatT is entirely defined by its values on the sections inΓ (Ik,p) with polynomial
coefficients of degreek − l. We recall that the Lie derivative in the direction of vector
fields in h0 on those has no effect on the “density part” and corresponds to the natural
representation ofh0 on

Sk−lg∗−1 ⊗ Ik,p. (17)

The image of such sections through the application ofT is made of sections with constant
coefficients. This image corresponds to a submoduleF of Sl(g−1) ⊗ �δ(g−1) overh0. The
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irreducible components ofF necessarily appear in the decomposition of(17) and thus the
one of⊗k−lg∗−1 ⊗ Ik,p.

Our last argument goes as in the proof ofLemma 11. Let �f describe a submodule of
F isomorphic to a submoduleL of ⊗k−lg∗−1 ⊗ Ik,p. Let�l be the diagram describingL. On
the one hand, in application of the Littlewood–Richardson rule, in the symplectic (resp.
orthogonal) case�l is obtained by adding 2(k − l)(n − 1) (resp. (k − l)(n − 2)) boxes to�ı,
with no more than 2(k − l) (resp. (k − l)) boxes in a single row. On the other hand, since
�f contains exactly 2l boxes, it is obtained by removing 2(k − l) (resp. (k − l)) columns on
the left of�l.

Therefore,�f < �ı. But the invariance ofT ensures that the values ofCδ on F andIk,p

coincide, which contradicts the hypothesis on the shift.�

Corollary 14. If the shift is not in the set CV of Theorem 12then the g-equivariant quan-
tization is unique.
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